

Iran University of Medical Sciences

"GOD is GOOD"

Evaluation of plant extract using bioinformatics tools

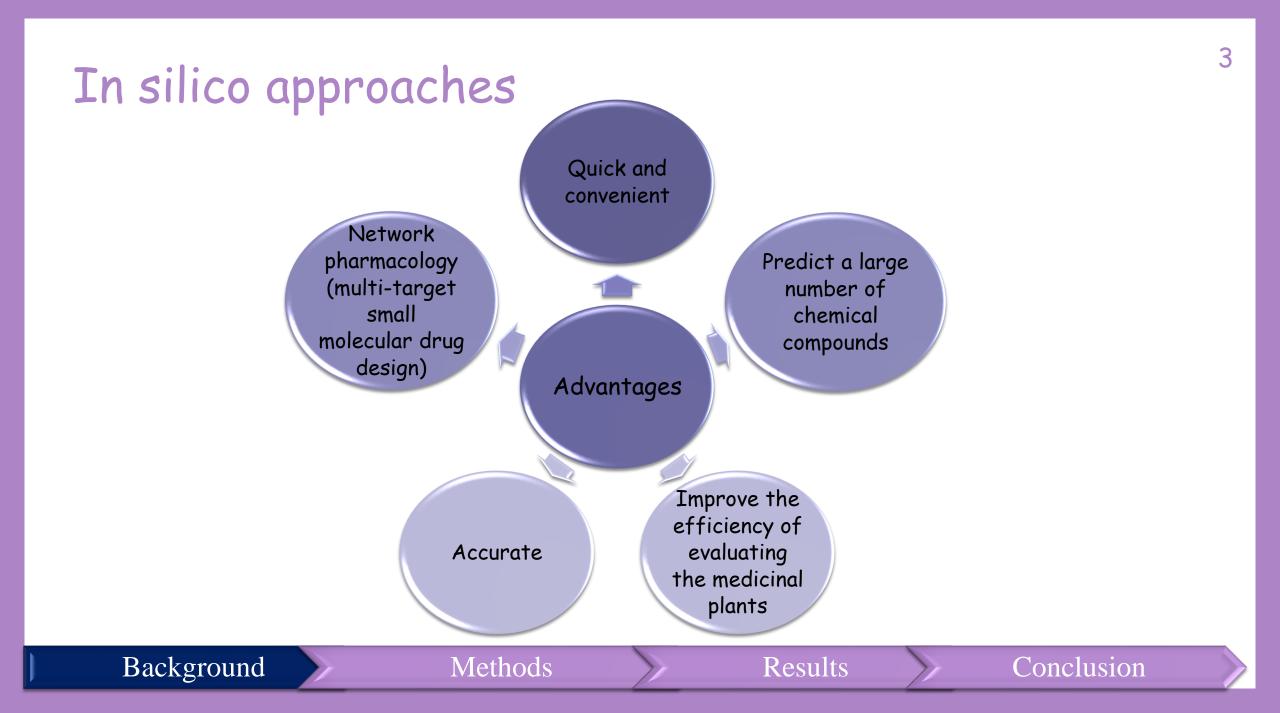
By : Gholamreza Taheripak,phD Department of Biochemistry, School of Medicine, Iran University of Medical Sciences

Medicinal plants

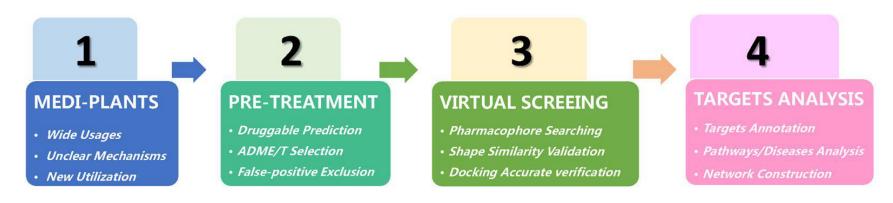
> WHO report: over 30% of all plant species been used for medicinal purposes

- > Important but Complex task:
 > Varied and complex chemical constituents of medicinal plants

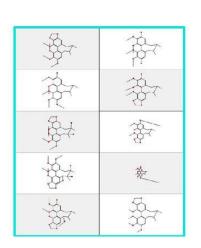
Methods

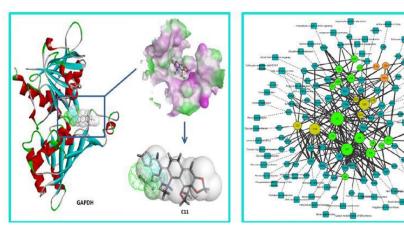

- > Time consuming
- > Expensive
- > So...

Need for new technologies and methods: in silico approaches

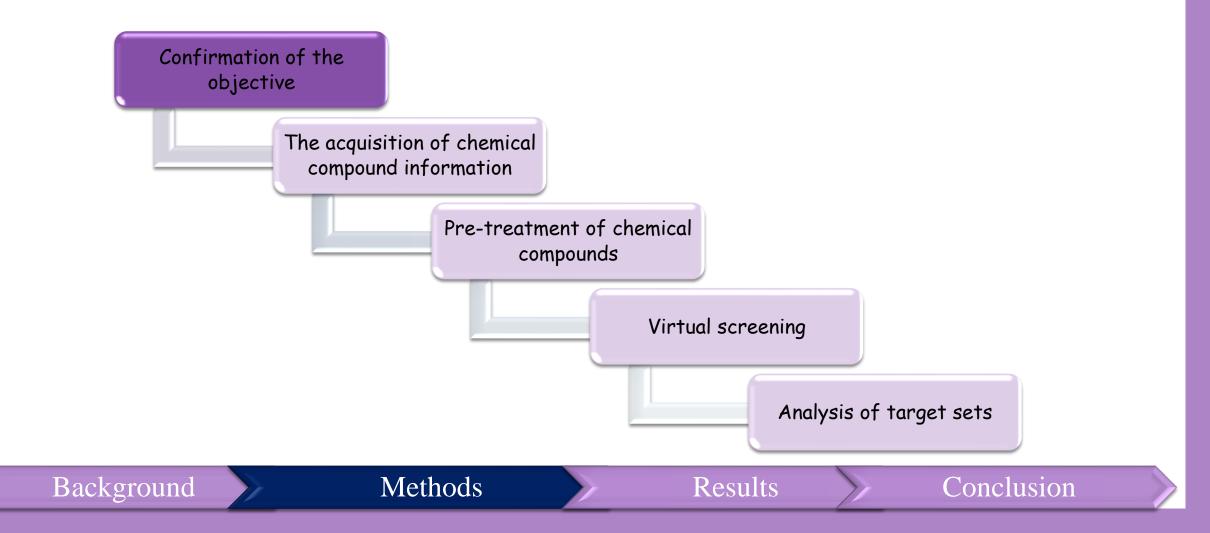

Results

Conclusion


Background



Methodology

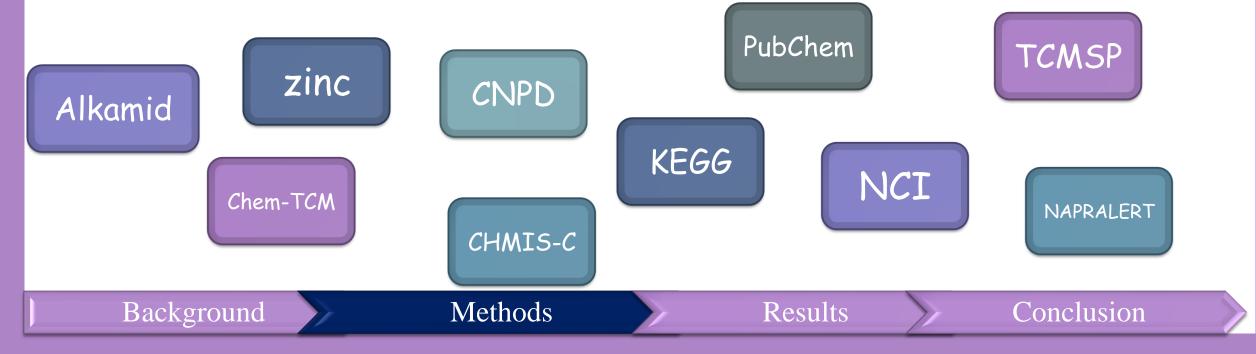


Background

Methods

Results

Methodology steps


Confirmation of the objective

- I. Common herbs with a more complex mechanism that of other herbs.
- II. Herbs with a long history of traditional usage but fewer studies on their phytochemistry and pharmacology.
- III. Herbs with a history of traditional usage but now with a new utilization.

The acquisition of chemical compound information

- I. Collection of chemical compound information
 - i. separation and purification of the compounds in a local laboratory
 - ii. literature reports
 - iii. small molecule compound databases

Pre-treatment of chemical compounds

- I. Prediction of drug-like properties
 - i. Structural characteristics: hydrogen bonding, polar surface area, lipophilicity, shape, molecular weight, and acid dissociation constant (pKa).
 - ii. Physicochemical properties: solubility, pH value, permeability and chemical stability.
 - iii. Biochemical properties: metabolism protein binding affinity and transport ability.
 - iv. Pharmacokinetics and toxicity: half-life, bioavailability,drug interactions and half lethal dose, LD50.
- II. ADME/T selection
 - i. absorption, distribution, metabolism, excretion and toxicity

III. Exclusion of false-positive compounds

Results

Virtual screening

Molecular docking

relies on the characteristics of the receptor

Pharmacophore theory

 is an abstract set of molecular features that are necessary for the molecular recognition of a ligand by a biological macromolecule

Small molecular shape similarity

 defined as a database search technique based on the quantitative structure-activity relationships of compounds with the same mechanisms

Methods

Results

Common virtual screening softwares

Molecular Docking

- Affinity
- AutoDock
- Dock
- Glide
- FlexX
- Dockit
- ZDock

Background

Pharmacophore model

- Apex-3D
- DISCOtech
- Discovery Studio
- GASP

Methods

• SEAware

Small molecule shape similarity

Conclusion

- CerberuS
- FlexS
- · BRUTUS
- WEGA

Results

Analysis of target sets

Analysis and annotation of target information

- Uniprot
- RCSB
- BindingDB
- BioGRID
- DRUGBANK
- KEGG
- STRING

Construction of network pharmacology

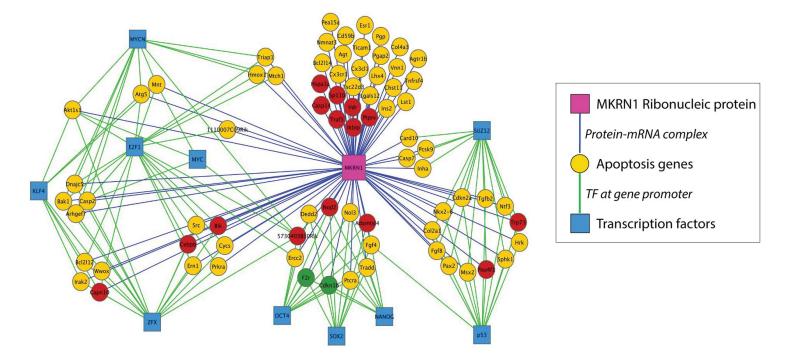
Ingenuity Pathway Analysis (IPA) software

Methods

- KEGG pathway database
- MetaCore

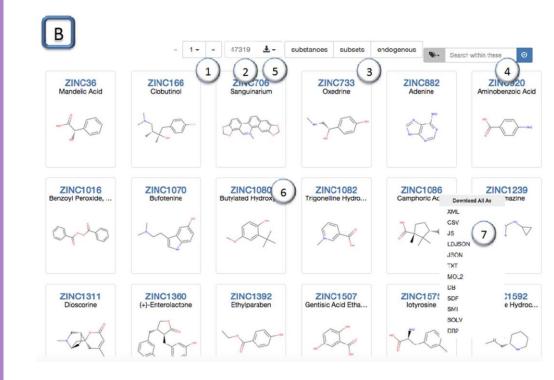
Background

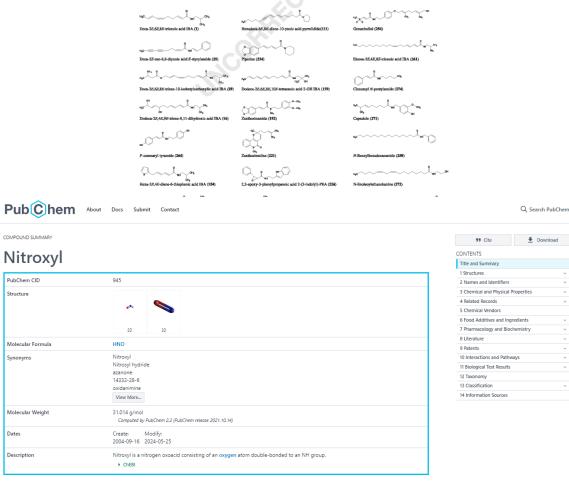
11


Conclusion

Results

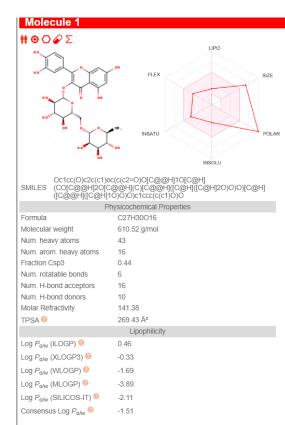
Different network visualization tools


Methods


I. CADLIVE
II. Cytoscape
III. Graphviz
IV. Pajek
V. VANTED
VI. VisANT
VII. YANAsquare

Results

Chemical compound information



Background

Methods

Results

ADME/T

	Water Solubility
Log S (ESOL) ⁶⁹	-3.30
Solubility	3.08e-01 mg/ml ; 5.05e-04 mol/l
Class 🤨	Soluble
Log S (Ali) 🧐	-4.87
Solubility	8.30e-03 mg/ml ; 1.36e-05 mol/l
Class 😕	Moderately soluble
Log S (SILICOS-IT) 📀	-0.29
Solubility	3.15e+02 mg/ml ; 5.15e-01 mol/l
Class 🐵	Soluble
	Pharmacokinetics
GI absorption ⁽⁹⁾	Low
BBB permeant 📀	No
P-gp substrate 📀	Yes
CYP1A2 inhibitor 📀	No
CYP2C19 inhibitor ⁽³⁾	No
CYP2C9 inhibitor	No
CYP2D6 inhibitor	No
CYP3A4 inhibitor 🧐	No
Log K _p (skin permeation) ⁽⁹⁾	-10.26 cm/s
	Druglikeness
Lipinski 🐵	No; 🛿 violations: MW>500, NorO>10, NHorOH>5
Ghose 😕	No; 4 violations: MW>480, WLOGP<-0.4, MR>130, #atoms>70
Veber 🧐	No; 1 violation: TPSA>140
Egan 🐵	No; 1 violation: TPSA>131.6
Muegge 🛞	No; 4 violations: MW>600, TPSA>150, H-acc>10, H-don>5
Bioavailability Score 📀	0.17
	Medicinal Chemistry
PAINS 🧐	1 alert: catechol_A
Brenk 😣	1 alert: catechol 🥹
Leadlikeness 🔞	No; 1 violation: MW>350
Synthetic accessibility ⁽²⁾	6.52

Physicochemical

Property	Value	DrugBank Percentile	Units
Molecular Weight	610.52	89.65%	Dalton
LogP	-1.69	11.55%	log- ratio
Hydrogen Bond Acceptors	16.00	96.37%	#
Hydrogen Bond Donors	10.00	96.55%	#
Lipinski Rule of 5	1.00	2.91%	# of 4
Quantitative Estimate of Druglikeness (QED)	0.14	8.10%	-
Stereo Centers	10.00	95.52%	#
Topological Polar Surface Area (TPSA)	269.43	95.04%	Ų

Property	Prediction	DrugBank Percentile	Units
Human Intestinal Absorption 😧	0.09	6.86%	-
Oral Bioavailability	0.18	3.45%	-
Aqueous Solubility	-3.86	34.28%	log mol/L
Lipophilicity 😧	0.77	38.15%	log-rat
Hydration Free Energy 😧	-15.67	7.68%	kcal/m
Cell Effective Permeability 😧	-6.82	3.72%	cm/s
PAMPA Permeability	0.09	12.72%	-
P-glycoprotein Inhibition 😧	0.14	55.45%	-

Excretion

Property

Half Life 🛛 🛆

Drug Clearance

(Hepatocyte) 🛛 🛆

Drug Clearance

(Microsome) 🛛 🛆

Prediction

49.51

25.57

40.10

Absorption

Ĩ≇₿

Distribution

Property	Prediction	DrugBank Percentile	Units
Blood-Brain Barrier Penetration 😧	0.08	3.02%	-
Plasma Protein Binding Rate 🛛 🛆	84.88	63.32%	%
Volume of Distribution at Steady State 🛛 🛆	6.39	81.74%	L/kg

Metabolism

Property	Prediction	DrugBank Percentile	Units
CYP1A2 Inhibition	0.01	34.74%	-
CYP2C19 Inhibition	0.03	29.78%	
CYP2C9 Substrate	0.03	9.42%	-
CYP2C9 Inhibition	0.02	36.91%	-
CYP2D6 Substrate	0.02	12.95%	-
CYP2D6 Inhibition	0.03	42.73%	
CYP3A4 Substrate	0.41	42.50%	-
CYP3A4 Inhibition	0.01	33.11%	-

Units

hr

uL.min-1.

cells)-1

mL.min-1.g-

1

(106

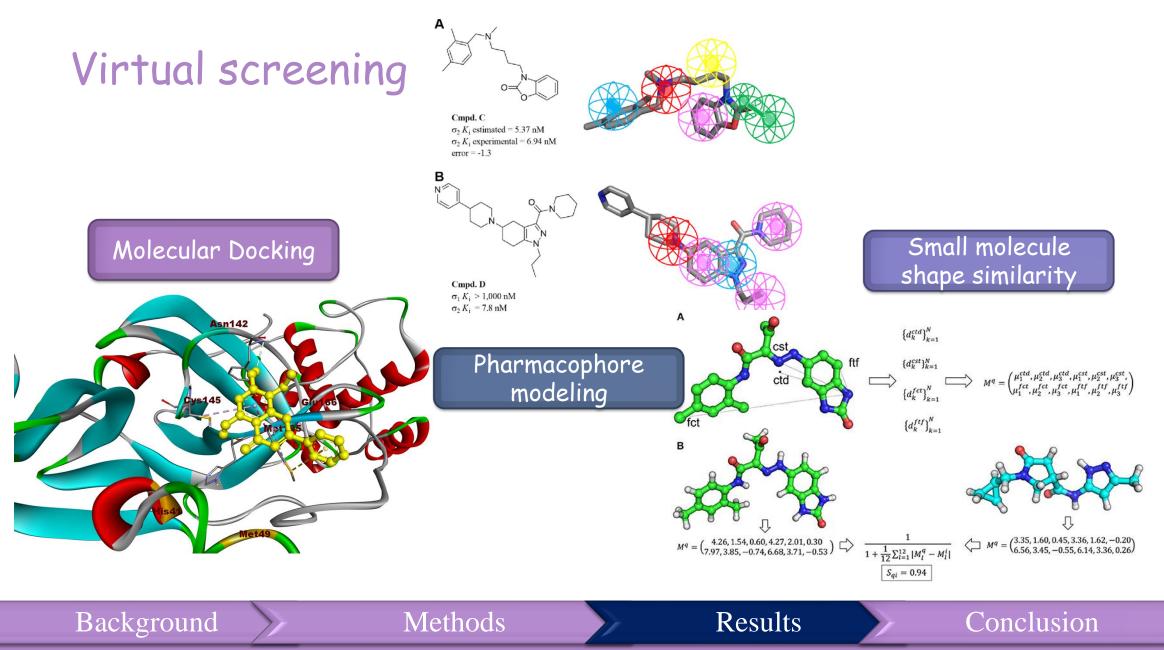
DrugBank Percentile

87.05%

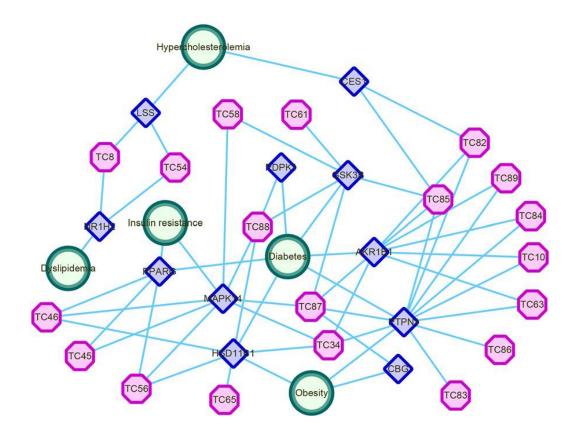
38.66%

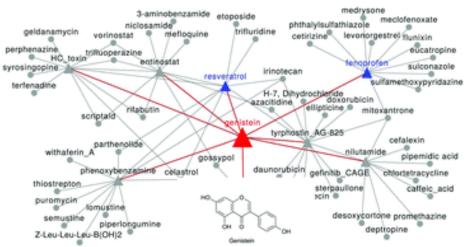
70.84%

6


Toxicity

Property	Prediction	DrugBank Percentile	Units
hERG Blocking 🚱	0.65	69.99%	-
Clinical Toxicity 🥹	0.20	65.99%	-
Mutagenicity 😧	0.60	88.02%	-
Drug Induced Liver Injury 😧	0.75	67.74%	-
Carcinogenicity 😡	0.02	10.62%	-
Acute Toxicity LD50 😧	2.90	73.40%	log(1/(mol/kg))
Skin Reaction 😧	0.21	22.64%	-
Androgen Receptor (Full Length) 🚱	0.08	83.68%	
Androgen Receptor (Ligand Binding Domain)	0.12	91.47%	-
Aryl Hydrocarbon Receptor 😧	0.11	73.09%	-


Background

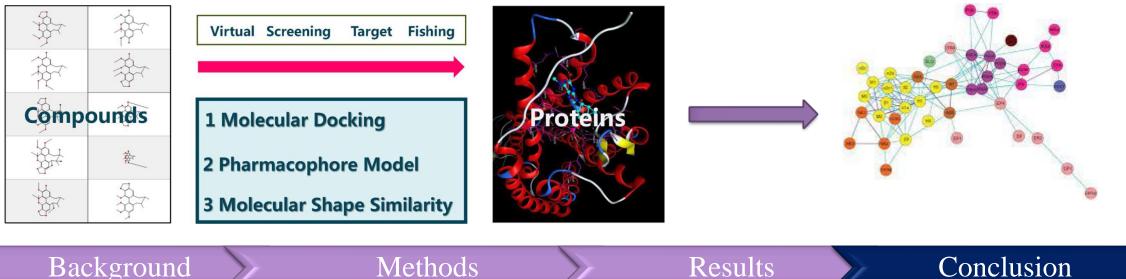

Methods

Results

Network pharmacology

Background

Methods


Results

Conclusion

16

Conclusion

> This methodology is superior to conventional screening because it requires only structural information on compounds and can perform multi-target screening of a vast number of compounds in a relatively short period of time, which can drastically reduce the cost and time of drug development. Moreover, combining this in silico methodology with pertinent pharmacological experiments could significantly enhance the efficiency of medicinal plant research and new drug discovery.

Results

Background

با تشکر

18